American University of Beirut		Problem 1	/14
Department of Electrical and Computer Engineering		Problem 2	/8
EECE 311 – Electronic Circuits		Problem 3	/5
Midterm – Summer 2010		Problem 4	/33
OPEN BOOK – 90 minutes		Problem 5	/40
		Total	/100
NAME:	_ ID Number:		

Problem 1. [14 points]

Find the <u>gain</u> v_o/v_i and <u>output resistance</u> R_o of the amplifier shown below. The PMOS transistors are long and have negligible λ , while for the NMOS transistor $r_o = 35 \text{ k}\Omega$. The transconductances g_m of the MOSFETs are all equal to 1 mA/V.

 V_{BIAS} is a DC voltage. All transistors are internal to the amplifier.

Problem 2. [8 points]

The source follower shown below is used as an audio amplifier. The MOSFET is biased such that its $g_m = 1 \text{ mA/V}$ and $r_o = 90 \text{ k}\Omega$. The current source has an output resistance of 60 k Ω . Determine the maximum C_L to have an upper 3-dB frequency of 20 kHz.

Problem 3. [5 points]

An operational amplifier has a differential gain of 10^5 and a CMRR of 78 dB. Find the common-mode gain.

Problem 4. [33 points]

a) Consider the current source shown in Figure 1. Assume $V_{DD} = 2.5$ V and $I_{REF} = 75 \mu A$. Find the value of *R* if the MOSFETs have $W = 3 \mu m$, $L = 1 \mu m$, $V_t = 0.6$ V, and $k'_n = 200 \mu A/V^2$. Assume that $V'_A = 10 \text{ V/}\mu m$.

b) What is the lowest possible value of V_0 ?

c) The two MOSFETs are matched. Find the change in the output current that corresponds to a change in the output voltage from 1 V to 2.5 V.

d) Repeat part (c) if Q_1 has $W/L = 3 \mu m / 1 \mu m$ but Q_2 has $W/L = 15 \mu m / 5 \mu m$.

e) What should be the value of a resistance that is inserted between the source of Q_2 and ground to reduce the output current to 10 μ A? The two MOSFETs are matched with $W/L = 3 \mu m / 1 \mu m$.

f) With the resistance of part (e) inserted between the source and Q_2 and ground, find the change in the output current that corresponds to a change in the output voltage from 1 V to 2.5 V.

Problem 5. [40 points]

The CMOS common-source amplifier shown in Figure 2 is biased using $I_{\text{REF}} = 75 \ \mu\text{A}$, and has $W/L = 6 \ \mu\text{m}/0.25 \ \mu\text{m}$ for all transistors, $k'_n = 250 \ \mu\text{A}/\text{V}^2$, $k'_p = 100 \ \mu\text{A}/\text{V}^2$, $V'_{\text{An}} = 10 \ \text{V/}\mu\text{m}$, $|V'_{\text{Ap}}| = 5 \ \text{V/}\mu\text{m}$, $V_{\text{tn}} = -V_{\text{tp}} = 0.6 \ \text{V}$.

Figure 2

a) Neglecting channel-length modulation in the DC analysis, find: V_{OV1} , g_{m1} , r_{o1} , r_{o2} , and the voltage gain v_0/v_i .

Assume now that for all MOSFETs in the circuit, $C_{gs} = 12$ fF, $C_{gd} = 10$ fF, $C_{db} = 25$ fF, and $C_{sb} = 25$ fF. The signal source (not shown in the figure) has a source resistance R_{SIG} of 47 k Ω .

b) Using Miller's theorem, and assuming that the input circuit determines the upper 3-dB frequency $f_{\rm H}$, find the value of $f_{\rm H}$.

c) Based on the complete amplifier transfer function $V_{o}(s)/V_{sig}(s)$, show *and label* the Bode plots for <u>magnitude</u> *and* <u>phase</u>.

d) Using the open-circuit time constant methods, find the resistance seen by each capacitor, and estimate the value of $f_{\rm H}$. Show all work.