American University of Beirut	Problem 1	$/ 14$
Department of Electrical and Computer Engineering	Problem 2	$/ 8$
EECE 311 - Electronic Circuits	Problem 3	$/ 5$
Midterm - Summer 2010	Problem 4	$/ 33$
OPEN BOOK - 90 minutes	Problem 5	$/ 40$
	Total	$/ 100$

NAME: \qquad ID Number: \qquad

Problem 1. [14 points]

Find the gain v_{o} / v_{i} and output resistance R_{0} of the amplifier shown below. The PMOS transistors are long and have negligible λ, while for the NMOS transistor $r_{o}=35 \mathrm{k} \Omega$. The transconductances g_{m} of the MOSFETs are all equal to $1 \mathrm{~mA} / \mathrm{V}$.
$V_{B I A S}$ is a DC voltage. All transistors are internal to the amplifier.

Problem 2. [8 points]

The source follower shown below is used as an audio amplifier. The MOSFET is biased such that its $g_{m}=1 \mathrm{~mA} / \mathrm{V}$ and $r_{o}=90 \mathrm{k} \Omega$. The current source has an output resistance of $60 \mathrm{k} \Omega$. Determine the maximum C_{L} to have an upper 3-dB frequency of 20 kHz .

Problem 3. [5 points]
An operational amplifier has a differential gain of 10^{5} and a CMRR of 78 dB . Find the common-mode gain.

Problem 4. [33 points]

a) Consider the current source shown in Figure 1.

Assume $V_{\mathrm{DD}}=2.5 \mathrm{~V}$ and $I_{\mathrm{REF}}=75 \mu \mathrm{~A}$.
Find the value of R if the MOSFETs have $W=3 \mu \mathrm{~m}, L=1 \mu \mathrm{~m}, V_{\mathrm{t}}=0.6 \mathrm{~V}$, and $k_{\mathrm{n}}^{\prime}=200 \mu \mathrm{~A} / \mathrm{V}^{2}$. Assume that $V_{\mathrm{A}}{ }^{\prime}=10 \mathrm{~V} / \mu \mathrm{m}$.

Figure 1
b) What is the lowest possible value of V_{O} ?
c) The two MOSFETs are matched. Find the change in the output current that corresponds to a change in the output voltage from 1 V to 2.5 V .
d) Repeat part (c) if Q_{1} has $W / L=3 \mu \mathrm{~m} / 1 \mu \mathrm{~m}$ but Q_{2} has $W / L=15 \mu \mathrm{~m} / 5 \mu \mathrm{~m}$.
e) What should be the value of a resistance that is inserted between the source of Q_{2} and ground to reduce the output current to $10 \mu \mathrm{~A}$? The two MOSFETs are matched with $W / L=3 \mu \mathrm{~m} / 1 \mu \mathrm{~m}$.
f) With the resistance of part (e) inserted between the source and Q_{2} and ground, find the change in the output current that corresponds to a change in the output voltage from 1 V to 2.5 V .

Problem 5. [40 points]

The CMOS common-source amplifier shown in Figure 2 is biased using $I_{\text {REF }}=75 \mu \mathrm{~A}$, and has $W / L=6 \mu \mathrm{~m} / 0.25 \mu \mathrm{~m}$ for all transistors, $k_{\mathrm{n}}^{\prime}=250 \mu \mathrm{~A} / \mathrm{V}^{2}, k_{\mathrm{p}}^{\prime}=100 \mu \mathrm{~A} / \mathrm{V}^{2}$, $V_{\text {An }}^{\prime}=10 \mathrm{~V} / \mu \mathrm{m},\left|V_{\text {Ap }}^{\prime}\right|=5 \mathrm{~V} / \mu \mathrm{m}, V_{\mathrm{tn}}=-V_{\mathrm{tp}}=0.6 \mathrm{~V}$.

Figure 2
a) Neglecting channel-length modulation in the DC analysis, find: $V_{\mathrm{OV} 1}, g_{\mathrm{m} 1}, r_{\mathrm{o} 1}, r_{\mathrm{o} 2}$, and the voltage gain v_{0} / v_{i}.

Assume now that for all MOSFETs in the circuit, $C_{\mathrm{gs}}=12 \mathrm{fF}, C_{\mathrm{gd}}=10 \mathrm{fF}, C_{\mathrm{db}}=25 \mathrm{fF}$, and $C_{\mathrm{sb}}=25 \mathrm{fF}$. The signal source (not shown in the figure) has a source resistance $R_{\text {SIG }}$ of $47 \mathrm{k} \Omega$.
b) Using Miller's theorem, and assuming that the input circuit determines the upper 3-dB frequency f_{H}, find the value of f_{H}.
c) Based on the complete amplifier transfer function $V_{0}(s) / V_{\text {sig }}(s)$, show and label the Bode plots for magnitude and phase.
d) Using the open-circuit time constant methods, find the resistance seen by each capacitor, and estimate the value of f_{H}. Show all work.

